142 research outputs found

    Quantitative characterization of fluid occurrence in shale reservoirs

    Get PDF
    Shale oil and gas, as important unconventional resources, have been widely discussed in the last decade. The occurrence characteristics of fluids (oil, gas, and water) in shale reservoirs are closely related to the exploitation of shale oil and gas, therefore the quantitative characterization of fluid occurrence in shale reservoirs has received extensive attention. In this paper, the latest advances and potential challenges on this subject are summarized. With respect to shale oil, the amounts, ratios and micro-distributions of shale oil in different states can be determined using the state equation of liquid and adsorption ratio equation, which contributes to identifying high-quality shale oil reservoirs. However, it is still necessary to strengthen the research on the multi-attribute coupling relationship and oil-rock interaction of shale oil reservoirs, and the determination of occurrence characteristics of adsorbed and free oil under in situ reservoir conditions. In terms of shale gas evaluation, the process analysis method and isotope fractionation method effectively solve the problem of evaluating in situ gas-bearing characteristics of shale, and can accurately estimate the amounts of total, adsorbed and free gas. The quantum physisorption behavior of gas could be a new research direction to reveal the microscopic occurrence mechanism of shale gas. As for shale pore water, a complete evaluation procedure for determining the amounts and micro-distributions of adsorbed and free water in shale matrix pores has been established, which provides insight into the storage and flow of oil and gas. In future work, a study on the quantitative evaluation of water-rock interaction is significant for obtaining the adsorbed and free water under in situ reservoir conditions.Document Type: PerspectiveCited as: Li, J., Cai, J. Quantitative characterization of fluid occurrence in shale reservoirs. Advances in Geo-Energy Research, 2023, 9(3): 146-151. https://doi.org/10.46690/ager.2023.09.0

    Recent developments on fractal-based approaches to nanofluids and nanoparticle aggregation

    Get PDF
    This project was supported by the National Natural Science Foundation of China (Nos. 41572116, 51576114, ​41630317), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUG160602) and the Natural Science Foundation of Fujian Province of China (No. 2016J01254). The authors of the figures that used in presented review are also highly appreciated.Peer reviewedPostprin

    Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids

    Get PDF
    This project was supported by the National Natural Science Foundation of China (No. 41572116), the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan) (No. CUG160602).Peer reviewedPostprin

    Current advances in capillarity: Theories and applications

    Get PDF
    As common physical phenomena in porous media, capillarity behaviors exist in many engineering applications and natural science fields. The experimental, theoretical and numerical research on capillarity in porous media has lasted for more than a century, and the research results have been widely used in various fields, such as the development of conventional and unconventional resources. However, although the research has made great progress, the complex imbibition mechanism poses new challenges to us. The 1st National Conference on Imbibition Theory and Application in Porous Media was held in Beijing from April 22 to 24, 2023, to gather  researchers who are interested in imbibition research, exchange the latest progress and achievements in the field of imbibition in porous media, and discuss research hotspots and difficulties.Cited as: Cai, J., Sun, S., Wang, H. Current advances in capillarity: Theories and applications. Capillarity, 2023, 7(2): 25-31. https://doi.org/10.46690/capi.2023.05.0

    Influence of permeability anisotropy on heat transfer and permeability evolution in geothermal reservoir

    Get PDF
    Acknowledgments The author would like to thank Dr. Quan Gan’s supervision, family’s support, and Prof. Cai’s valuable suggestions in completing this work, as part of the MSc degree requirements in Reservoir Engineering programme in the University of Aberdeen.Peer reviewedPublisher PD

    Subsurface multiphase reactive flow in geologic CO2 storage: Key impact factors and characterization approaches

    Get PDF
    Multiple measurements and data sets show unequivocally that levels of carbon dioxide (CO2) have been increasing in the Earth's atmosphere for the past several centuries, with the rate becoming  steeper in recent decades (Soeder, 2021). Carbon capture, utilization and storage (CCUS) has been regarded as an effective approach to swiftly cut CO2 emissions. Among the existing CCUS technologies, CO2 geological utilization and storage has the highest technological maturity, and is the most vital “sink” to consume the captured CO2. For CO2 geological utilization and storage, large amounts of CO2 need to be injected into the deep subsurface, and the CO2 flow in the subsurface is a very complicated process. The flow system is a two-phase or even a three-phase system, and flow in pores needs to be clearly distinguished from flow in fractures and wellbores. Most importantly, wettability, pore structure, geochemical reactions play very important roles in governing subsurface CO2 flow. Without a clear understanding of how the impact factors affect CO2 flow, it is difficult to predict the CO2 impairs the confidence of policy makers and investors to support large-scale geologic CO2 storage. To study CO2 flow, there is a need to develop effective approaches to characterize CO2 flow in subsurface system. This work discusses several key factors that have strong impact on subsurface CO2 flow, and an effective approach for CO2 flow characterization. Impact of wettability and pore structure on multiphase flow. The injection of CO2 into geological formations displaces brine from pore spaces, resulting in various CO2-brine displacement patterns, such as capillary fingering, viscous fingering, crossover, and compact displacement. These patterns also occur as the brine later flows back to displace supercritical CO2 when the injection stops. The CO2-brine displacement results in CO2 becoming trapped as droplets and ganglia in pore spaces, referred to as residual trapping or capillary trapping. Wettability and pore structure have significant effects on CO2-brine displacement patterns and capillary trapping. The wettability represents the affinity of fluid to the solid surface. By changing the capillary force governed by the Young-Laplace law, the wettability modifies the local porefilling events and thus impacts the displacement patterns. Increasing the wettability of the invading fluid from drainage to imbibition stabilizes the displacement front due to the cooperative pore-filling events at the pore scale (Holtzman and Segre, 2015). However, the displacement pattern will change extensively as a result of corner flow when the invading fluid is strongly wetting to the solid surface (Hu et al., 2018). On the other hand, the role of pore structure in displacement patterns may depend on the type of permeable media. The pore-scale disorder, which represents the randomness of pore size, changes the threshold capillary pressure and affects the local pore-filling paths. Increasing disorder promotes unstable displacement patterns for both drainage and imbibition conditions (Toussaint et al., 2005), but under certain wettability conditions, higher disorder may enhance cooperative porefilling events and thus smooth the displacement front. The roughness variations in the aperture between the two rough surfaces determines the flow path and controls the displacement patterns for a fractured medium. Therefore, the transition of CO2-brine displacement patterns under various wetting and pore structure conditions is an open challenge and a very active area of research.Impact of geochemical reactions on multiphase flow. Geochemical reactions play a key role in determining CO2 flow patterns. Though geochemical reaction-induced mineral trapping can only become vital after hundreds to thousands years of CO2 injection in reservoir scale, fast mineral dissolution and precipitation in micro-scale flow channels of host rocks and caprocks can change permeability of the rocks and thus influence the migration behaviour of injected CO2 (Zhang et al., 2019). For carbonate rocks, CO2 injection usually causes opening of flow channels due to dissolution of carbonates, which enhances CO2 injectivity and is beneficial for largescale CO2 storage (Yang et al., 2020). A sandstone reservoir that contains large amounts of feldspars and glauconite may have a strong CO2-sandstone interaction, which usually causes sealing of flow channels due to precipitation of secondary minerals (Xu et al., 2004). However, given different types of flow channels and varying reaction environments, it is very difficult to precisely predict if a given flow channel in a rock will open or close under the influence of geochemical reactions. Therefore, an important research direction in the future is to find out a criterion that can determine if a flow  channel will open or close under the influence of geochemical reactions, with the consideration of complicated reaction environments.Pore-scale modeling of multiphase reactive flow. Compared with continuum-scale models, pore-scale modeling, which directly reflects the realistic porous structures, provides a powerful tool for studying the multiphase flow, species transport, chemical reaction and mineral dissolution/precipitation processes (Chen et al., 2022). Effects of pressure, temperature, fluid properties, wettability, pore size and porous morphology on the supercritical CO2-water two-phase flow and distributions have been extensively studied by pore-scale modeling. Pore-scale modeling that reveals the mechanisms of nonequilibrium supercritical CO2 dissolution into the surrounding brine will be beneficial for enhancing CO2 solubility trapping. Recently, supercritical CO2 storage in the depleted oil reservoir has also drawn increasing attention, and the resulting supercritical CO2-oil-water three-phase flow are extremely complicated (Zhu et al., 2021). Pore-scale modeling is an ideal tool to study the effects of structure heterogeneity, mineral composition and reaction kinetics on the rock dissolution processes. Further pore-scale modeling work to investigate the effects of  twophase or three-phase flow on mineral dissolution/precipitation processes are helpful for better understanding the CO2 storage processes in saline formations or depleted oil reservoirs. AcknowledgementThis work was performed by the support of Key R&D Program of Inner Mongolia Province of China (No. 2021ZD0034-3) and the National Natural Science Foundation of China (Nos. 42172315, 42141011 and 52122905).Cited as: Zhang, L., Chen, L., Hu, R., Cai, J. Subsurface multiphase reactive flow in geologic CO2 storage: Key impact factors and characterization approaches. Advances in Geo-Energy Research, 2022, 6(3): 179-180. https://doi.org/10.46690/ager.2022.03.0

    Advances in multiscale rock physics for unconventional reservoirs

    Get PDF
    The multiscale rock physics of unconventional reservoirs have drawn increasing attention in recent years, which involves several essential issues, including measuring method, transport property, physics model, characteristic scale, and their application. These issues vastly affect science and engineering regarding the exploration and development of unconventional reservoirs. To encourage communication on the advances of research on the rock physics of unconventional reservoirs, a conference on Multiscale Rock Physics for Unconventional Reservoirs was jointly organized by the journals Energies and Advances in Geo-Energy Research. Due to the limitations of movement caused by COVID-19, 21 experts introduced their work online, and the conference featured the latest multiscale theories, experimental methods and numerical simulations on unconventional reservoirs.Cited as: Cai, J., Zhao, L., Zhang, F., Wei, W. Advances in multiscale rock physics for unconventional reservoirs. Advances in Geo-Energy Research, 2022, 6(4): 271-275. https://doi.org/10.46690/ager.2022.04.0
    corecore